Z OPEN.

DCP SUMMIT

.

OPEN EDGE ECOSYSTEM DEVELOPMENT Mika Hatanpää/Head of Data Center R&D/Nokia

OPEN. FOR BUSINESS

TELCO

Open edge ecosystem development Topics

- Edge data centers positioning
- Edge use cases applications
- Edge requirements rationale for new form factor
 - Environmental requirements
 - Facility constraints
 - Characteristics inherited from Open rack design
- Edge solution building blocks What is needed
 - Rack Indoor, Outdoor
 - Power feed options
 - Thermals and cooling
 - Server
 - Storage

- Edge solution building blocks continued...
 - Commodities
 - Accelerators
 - Clock and synchronization
 - Switches, SDN
 - Firmware
 - Edge cloud infrastructure SW •
 - Open management
- Nokia proposal for open edge
- Collaborative effort needed
- Open edge sub-group under Telco project

Edge data centers - Positioning

Pushing the limits to reach the next level Addressing capacity demand while driving down latency

Efficient capacity CENTRALIZED DATA CENTERS

Low latency & efficient transport EDGE DATA CENTERS

Managing the lowest latency/cost trade off with a layered architecture First data center solution designed for the edge

NOKIA

Public

Managing the lowest latency/cost trade off with a layered architecture First data center solution designed for the edge

Public

Edge use cases - Applications

Edge cloud is enabling new latency dependent use cases like AR and VR

Edge cloud – local infrastructure for low latency, high performance

Hardware acceleration for and terabit throughput

Converging all access and IP edge functions in the edge cloud

Edge requirements – Rationale for a new form factor

Facility constraints

cooling.

- Fully equipped Open Rack v2 weight is >800 kg \rightarrow >1200 kg/m2
 - Floor load capacity often limits the configurations.
- Rack depth is limited in most edge locations.
 - Old telco central office sites limit rack depth to 600-800 mm
 - Edge sites are typically existing radio sites where rack depth is max 600 mm
- Old sites typically also have limitations due to •
 - Elevator capacity
 - Delivery path height (door openings) and delivery path floor load capacity. •
- Old telco sites typically have -48VDC power feed infrastructure with battery rooms •
- Several AC power feed options for global use cases are needed, e.g.
 - 110VAC, 208VAC, 230VAC, 380VAC, single phase, three phase, 50/60 Hz, different wattages, different connectors, . . .
- Power cabling from top and bottom both need to be supported. Edge site power budgets quite often limit size of installations
- - Limitation can be as low as 4 kW per rack •
- Edge site cooling capacity often limits rack configurations
 - Limitation can be as low as 4 kW per rack

Edge facilities are often existing radio or central office sites with constraints related to space, power and

Environmental requirements

Standard telco equipment environmental requirements are still mandatory in most cases. For example:

- GR-1089-CORE.
- 09 and TEC/IR/SWN-2MB/07/MAR-10, GR-1089-CORE
- **Seismic tolerance**: GR-63-CORE, section 4.4 Zone 4
- 2 [21] Class 2.3
- **RoHS**: EU RoHS directive 2011/65/EU Article 7b (EN 50581 (2012))
- \bullet 2012/19/EU
- **REACH**: EU REGULATION (EC) No 1907/2006 •
- chapter 4.2.2.2 Shelf-Level Fire-Resistance Criteria.
- Energy efficiency: ATIS-0600015
- Acoustic noise: GR-63-CORE, section 4.6

Safety: IEC 62368-1:2014, EN60950-1: 2006 + A2:2013 and IEC 60950-1 for safety, including national deviations,

EMI/EMC: EN300386 (v1.6.1), CFR 47, FCC 15, class A, CISPR 22 Class A and CISPR 24, TEC/EMI/TEL-001/01/FEB-

Temperature tolerance: ETSI EN300 019-1-3 Class 3.1, ETSI EN300 019-1-3 Class 3.2, GR-63-CORE, section 4.1.

Transportation and storage: ETSI EN 300 019-1-2 v.2.2.1 class 2.2, EN 300 019-1-1 [20] Class 1.2, EN 300 019-1-

WEEE: EU WEEE (Waste Electrical & Electronic Equipment) Directive 2002/96/EC and recast WEEE Directive

Fire resistance: ANSI T1.307-2007 and the requirements specified in GR-63-CORE chapter 4.2.3, GR-63-CORE

Design target: Taking OCP benefits to the edge

Fit to edge physical limitations Open Modular Ecosystem **Energy efficient** Vanity free Preserve OpenRack benefits Toolless Dense

Fully front operated

Open rack like tool-less serviceability

Vanity free design

Centralized power supply

OCP design for serviceability

Top serviceability benefits of OCP based design:

- 4x faster completion of required HW tasks 1.
- 65% more servers handled per operational person* 2.
- 61% less of productive employee time lost* 3.
- 38% less time needed to resolve unplanned downtime* 4.

* Source: IDC OCP study

© 2018 Nokia 15

NOKIA

Why do we need a new form factor for the edge data centers? Summary

- rack v2) are targeted to real data center facilities.
- form factor implementation.

• Existing data center equipment designs (e.g. most EIA 19" Rackmount systems and Open

• Due to limitations of edge environments we need a form factor that that fits to edge locations and fulfills the requirements of edge applications in a cost efficient manner. • OCP design principles combined with edge requirements create a good basis for edge

Edge solution building blocks – What is needed

Rack – Indoor, Outdoor Requirements for edge solution building blocks

- Rack shall not be a mandatory component of an edge solution
 - Existing sites often have existing EIA 19" infrastructure where the edge server has to fit in
 - Scalability from small (few servers) to full rack configurations needed (>50 servers/rack)
- Indoor and outdoor installations are possible for edge equipment
- Indoor rack maximum footprint is 600 x 600 mm, including doors
- Back to back or back to wall rack installations need to be supported
- Racks may be closed from the rear side i.e. the equipment must be fully front operated.
- Outdoor cabinet solutions can vary a lot but in general the equipment must support outdoor installation by using an outdoor cabinet.

f an edge solution structure where the edge

e for edge equipment mm, including doors s need to be

Power feed options Requirements for edge solution building blocks

- Several power feed options are needed to support use of edge equipment globally. •
- Rack level power feed requires following components lacksquare
 - Rack level power distribution units (PDU) •
 - Rack level or equipment level power supply units (PSU)
- Centralized power supply (for more than one server) is preferred due to better efficiency.
- Typically required PDU voltage input options are:
 - -48 VDC
 - 208 VAC 3-phase
 - 230 VAC 1-phase
 - 400 VAC 3-phase
 - 400 VAC 3-phase NAM
- Typical PSU voltage input options are:
 - -48 VDC
 - 100/200 240 VAC
- Power feed is required to be redundant.

Thermals and Cooling Requirements for edge solution building blocks

- Equipment must support
 - Extended operating temperature range: -5C..+45C [ETSI EN300 019-1-3 Class 3.2]
 - Short term operating temperature range: -5..+55C [NEBS]
- must support:
 - Front to rear cooling
 - Rear to front cooling

• Due to rack installation options (e.g. back-to-back and wall-mount) all edge equipment

Server

Requirements for edge solution building blocks

- General purpose servers are the main building block of edge data centers. •
 - Server performance requirements may vary depending on the planned workloads
- High performance servers are required to run NFV edge cloud VNFs \bullet
 - Min 20 CPU cores per server is needed to be able to run e.g. OpenStack cloud effectively
 - Single CPU socket servers fit better to the shallow depth server chassis.
 - Min 400W power budget per 1RU server •
- Server chassis must fit into standard EIA 19" rack that is 600 mm deep.
- Server chassis maximum depth is 450 mm.
 - This enables cabling and efficient cooling within the 600 mm total depth of the rack
- \bullet supported.

Redundant hot swappable power supply, redundant fans and redundant connectivity shall be

Storage Requirements for edge solution building blocks

- Storage requirements in edge are modest for most applications
 - Some applications, e.g. CDN, have higher storage requirements
- For robustness purposes storage solution should be hot-swappable and should have RAID support.

Commodities Requirements for edge solution building blocks

- Servers and storage nodes shall use standard commodities:
 - Networking is to be implemented with PCIe NICs and OCP mezzanines •
 - Typically 100 GbE connectivity per server needed (OCP mezz + PCIe x8/16 slots on server)
 - Mass memory is to be implemented with standard 2,5" SATA or NVMe SSDs (U.2) and M.2 SSD cards.
 - New NGSFF / EDSFF NVMe form factors fit well to the small edge form factor.
 - NVDIMM technology ...
 - RAM memory is to be implemented with standard DDR4 DIMM modules
- Support for commonly used commodity form factors is mandatory due to
 - Good availability
 - Supported by wide ecosystem
 - Many kinds of use cases / technologies are available
 - Cost efficiency
 - No lock-ins

Accelerators Requirements for edge solution building blocks

- In telco many functionalities are done with special purpose HW using
 - FPGAs, DSPs, Network / packet processors, ASICs, GPGPUs \bullet
- Acceleration in edge data centers is becoming a must for
 - Radio baseband processing
 - Packet processing
 - Security
 - AI/ML
 - Video, AR
 - Etc.
- The system must be able to support heterogenous computing requirements including accelérators for different purposes.

• Support for high end accelerators (FHFL double-wide PCIe) is needed for e.g. AI/ML use cases.

Clock and synchronization Requirements for edge solution building blocks

- The system needs to have access to high precision grand master clock.
- Servers need to have high precision synchronization that is required by mobile networks applications.
- IEEE 1588 PTP can be used to provide synchronization information to the servers. Switches should support SyncE for accurate timing.

Switches, SDN Requirements for edge solution building blocks

- Server to switch connectivity is typically 100 GbE or more.
- Edge data center networking design is typically based on a redundant spine and leaf topology (Clos network architecture).
- Number if switches per rack is typically three or more (2 x leaf + HW management switch)
- Amount if cabling in a rack is huge and DAC cables (e.g. 100G QSFP28) are currently the most cost efficient way to implement rack internal connectivity.
- Switch must fit into standard EIA 19" rack that is max 600 mm deep.
- Switches should be fully front operated.
- Switch chassis maximum depth is 450 mm.

Firmware Requirements for edge solution building blocks

- Full remote management capabilities are required
 - Edge data centers are typically unmanned
 - Distance from the operations center may be hundreds of kilometers/miles
 - One operations center can control hundreds of edge sites with thousands of servers
- All equipment is preferred to be managed in a similar fashion through BMC Standard management interface is required to hide heterogeneity
- DMTF Redfish is proposed to be used as the HW management API
- Secure management interface is a must.
- Firmware must be able to provide high quality self diagnostics in case of issues. Firmware must support self healing of the system.

Edge cloud infrastructure SW Requirements for edge solution building blocks

- Telco applications deployed in edge data centers are VNFs running on a cloud infrastructure.
- Proposed edge cloud solution characteristics are:
 - Real-time support through software optimization & hardware accelerators
 - Flexible scalability from single server edge cloud to multi-rack system with SDN
 - Interoperable and open, supporting also 3rd party VNFs
 - Carrier grade high availability with sub-second reaction time, auto-recovery •
 - Deployment & update/upgrade automation with remote capability, runtime configuration management & open APIs
 - Hybrid infrastructure for hosting and running containerized and/or virtualized applications OPNFV verified offering - leveraging and scaling open source
- Nokia cloud infrastructure supports above characteristics
 - Shown in booth A26

Open management Requirements for edge solution building blocks

- In open ecosystem support for multivendor environment is a mandatory requirement. • This requires open APIs between different layers
- - RSD defines a good framework for data center gear management architecture
- Server management interface standardization is needed
 - IPMI is insecure and too low level with a lot of vendor specific extensions. •
 - DMTF Redfish is a standard preferred management interface for edge equipment •
- Switch management is typically done using SNMP and CLI
 - No common way to manage switches today.
 - BMC in switches simplifies HW management of switches.

Why new hardware form factor is needed for edge data centers? Edge site limitations and new requirements - Recap

- Edge sites are often existing telco sites.
- Traditional data center gear is too heavy and large for edge sites equipment needs to be more compact in terms of depth, height and weight.
- NEBS compliance is mandatory in terms of thermal requirements, seismic tolerance, humidity tolerance, etc.
- Power budgets are limited and support for variety of power feed options for all continents and locations is needed.
- Network functions virtualization (NFV) is driving cloudification of all services also in network edge. General purpose CPU servers are preferred for the virtualization platform.
- New telco 5G and mobile edge computing applications can benefit from acceleration capabilities for processing and networking.

Nokia proposal for open edge

Nokia proposal: Open edge server x86 solution designed to fully support edge / far-edge cloud deployments

ARCHITECTURE

- 19" compatible: fits in any 600mm deep cabinet
- Compact form factor: ranging from 2RU to 7RU high chassis
- Sleds either 1RU or 2RU high
- Fully front-operated (cabling, open rack-like tool less serviceability)
- Support for high end accelerators
- High availability: redundant fans, hot swappable storage
- Air flow configurable front to rear/rear to front

DIMENSIONS

- 130.55 (3RU) x 440 x 430 mm $(H \times W \times D)$
- Ca. 12.0 kg / 46.5 lbs. (Chassis with PSU's and RMC)

POWER

- 2N redundant AC & DC power supplies
- Power fed to sleds through backplane
- 400W per 1U sled
- 700W per 2U sled

ENVIRONMENTAL

- Full NEBS compliancy, seismic zone 4 [GR-63-Core, GR-1089-Core]
- Extended operating temperature range: -5C..+45C [ETSI EN300 019-1-3 Class 3.2], short term range: -5..+55C [NEBS]

MANAGEMENT

- RMC manages chassis power feed.
- All sleds managed through single interface in RMC unit (acts as an ethernet switch connecting the server slots)
- On board BMC in server sleds (RMC does not manage servers)

COMMODITY Supports standard commodities like DIMMs, NICs, HBA cards, HDD/SSD/NVMe disks, M.2 disks, GPGPU cards, etc.

Collaborative effort needed -

Open edge sub-group under Telco project

Invitation to the community

- and that is supported by a large ecosystem of suppliers and customers.
- data center solutions.
- \rightarrow Open edge sub-group to be created under OCP Telco project.
- Nokia aims for a truly open, collaborative HW development \rightarrow Target is an open OCP solution for the edge!

Collaborative effort is needed to define a solution that fulfils edge use cases

• We invite the OCP community (suppliers and adopters) to work with us on edge

Open edge sub-group under OCP Telco project - practices

<Proposal for open edge sub-group practices to be added according to agreements with OCPF. Target to add this by mid September>

<We launch today a new open edge sub-group under OCP Telco project. Initial members of the sub-group are Nokia, Intel, Flex and Quanta. All OCP members are invited to join the sub-group work>

© 2018 Nokia 36

Come and visit us at Nokia booth A26

Experience world's first open edge server and edge cloud infrastructure!

37 © 2018 Nokia

CP SUMMIT

FOR BUSINESS.

