

L inuxboot cont inuous
in tegrat ion
Jean-Marie Verdun/ITRenew
Guillaume Giamarchi/ITRenew

Open
Firmware

In t roduct ion

This is Work In Progress, feel free to collaborate

Linuxboot Continuous Integration platform aims to provide

1. Replicable build environment for linuxboot images
2. Fully automated testings at firmware level on real hardware
3. Multiple hardware generation support (currently focusing on

OCP nodes)

Arch i tec ture

job
controller

builder

node brick
validation

basic features
validation

O/S stability and
stress tests

Web API

CI must be used from a Web API. Job Controller takes as an input a
job description file which can stop the build at any 4 predefined stage.

Output is a status and a rom file for a specific board

Job status can be queried through the API

Active dev

Future dev

Implementat ion
1. Automatic redeployment managed through Ansible scripting
2. Automatic redundancy and scalability based on hardware availability
3. Slurm batch scheduler to manage run queue, unique job ID, and jobs

output
4. KVM used to sand box builds into Ubuntu Xenial VMs
5. Basic setup requires:

a. An ansible master node
b. A Slurm controller node
c. A Slurm batch node
d. All of them sharing the same subnet

Web API
Goals

1. Get as an input a github
repository address with a unique
commit ID

2. Provide job control
a. Launch
b. Kill
c. List

3. Provide jobs status feedback
a. Build log file

Initial implementation

Written in Go

Support

● Job launch
● Job status query
● Job log

Job cont ro l le r - Goa ls

1. Allocate and manage build nodes resources
2. Preset build environment
3. Store jobs status
4. Controlled using a hidden file which contains jobs description that will

override default values

Job cont ro l le r

1. Allocate job through Slurm batch scheduler
2. Setup a virtual machine (based on Ubuntu Xenial) when node is allocated

with predefined characteristics using KVM and virsh
a. VM storage is seating in memory (about 40 GB)
b. VM have access to the Internet and can run apt command to setup

build environment
3. Setup remote access to the VM from the slurm compute node
4. Copy the relevant files into the VM and setup build environment
5. Initiate job execution

Bui lder
Goals

1. Build a fully functional linuxboot image based on job parameters

Initial implementation

1. Based on osresearch/heads build environment
a. Requires initial board ROM
b. Can apply various patches to the kernel
c. Can build NERF (go based) user environment
d. Can control/extract final DXE drivers integrated within linuxboot

ROM

node br ick va l idat ion
Goals

1. Validate that a newly built image doesn’t brick a node (aka that we can
talk to the firmware through serial and successfully execute basic
command)

Initial implementation

1. Based on initial qemu launch of the ROM
2. Based on real hardware setup with a ROM emulator connected to the

board

bas ic features va l idat ion

1. Validate that a newly built image is properly detecting hardware
2. Validate that a newly built image is able to install an O/S and boot it

through
a. PXEboot or any other network boot capability
b. local boot on AHCI and NVMe storage

bas ic features va l idat ion

1. O/S image installer built for linuxboot
a. Ubuntu Xenial netinstaller or local boot kernel fails to boot properly

on linuxboot (the kernel hangs)
i. We regenerate a full ISO image based a valid original Ubuntu

Xenial ISO and disable EFI support within the installer kernel
ii. That image is also pre-configuring console output either to ttyS0

(local serial) or ttyS4 (SoL) on Winterfell machine
iii. That new image is also bootable through a PXEboot process

which is automatically configured on the slurm controller node.

O/S s tab i l i t y and tes ts
Goals

1. Validate that a newly built image is able to:
a. Run Linux at full operational mode

i. Properly detect hardware behavior
ii. Detect and can manage without error PCIe subsystems
iii. Can run various workload without system error and within an

acceptable performance goal
1. Run the Linpack/pysthone benchmark at speed
2. Run Networking benchmark at speed
3. Run bonnie++ at speed

Demo

Linuxboot CI
Controller Node

Winterfell E5-2680v2

Linuxboot CI
Testing Node

Winterfell E5-2680v2

Debug cardFTDIUSB

USB FT232H Power

USB SPI
EM100

SPI
Emulator

Network

Infrastructure

SFP+RJ45

SFP+

RJ45

Serial console

GPIO controller for remote
hard power on through relay

Upload firmware binary from controller node

Sca l ing the pub l i c C I

Current nodes are based on Winterfell machines:

● Dual Xeon 2680v2 / 64 GB RAM / 3 TB HDD / 1Gbps network - Cost :
750 $US (with racks)

● 20 servers are allocated
○ 4 machines are used for research development activity
○ 4 machines are used for development and industrialization
○ 4 machines are used for integration testings
○ 8 machines are used for production

Sca l ing the pub l i c C I
Estimated CI requirements to scale the project:

● Increase servers count with various backend model
○ Keep current infrastructure for Winterfell
○ For each new generation needs at least 4 nodes

■ 1 for brick testing
■ 3 for O/S setup and workload testing
■ Add 2 build servers (Winterfell class)

○ Integrate Leopard, Yosemite, Tioga Pass
○ Upgrade winterfell node with SSD/NVMe storage ?

● Secure long term hosting - 10k$ / month per rack (connectivity / power)

