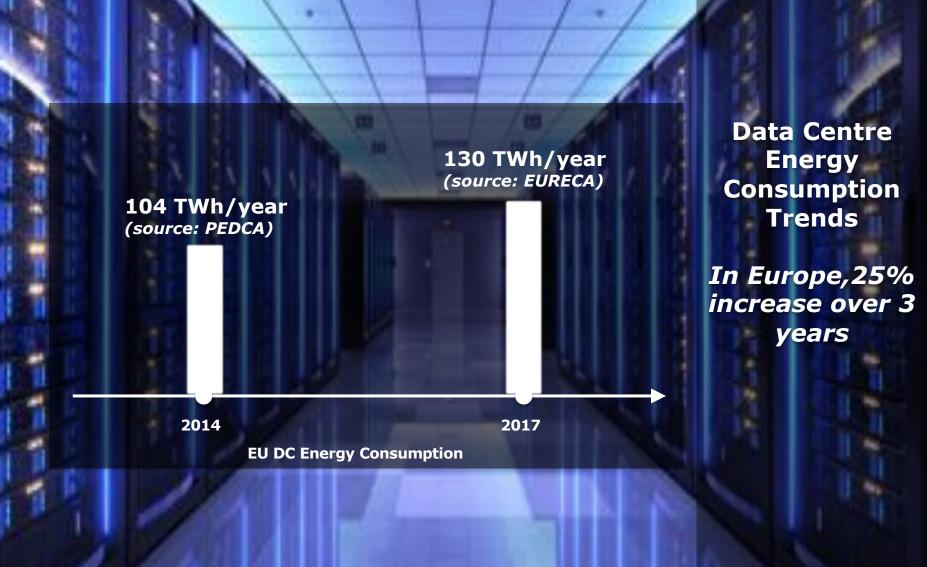
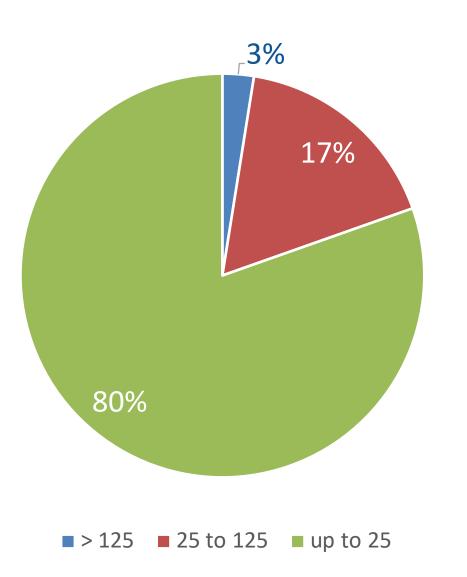


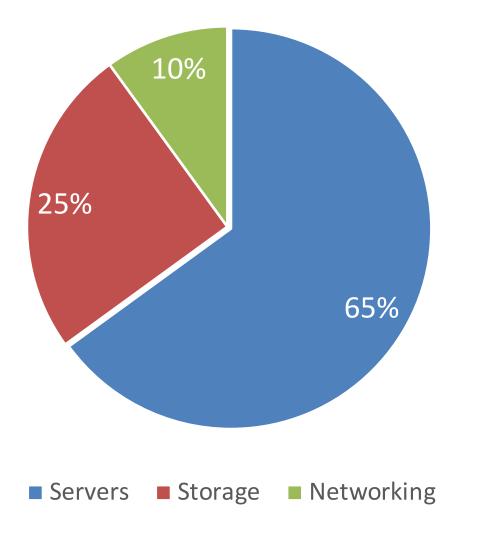
Energy Efficiency and EU Policy affecting Data Centres

Rabih Bashroush – Coordinator, EU H2020 EURECA Project Svetoslav Mihaylov – Policy Officer, European Commission Davide Polverini – Policy Officer, European Commission


Outline

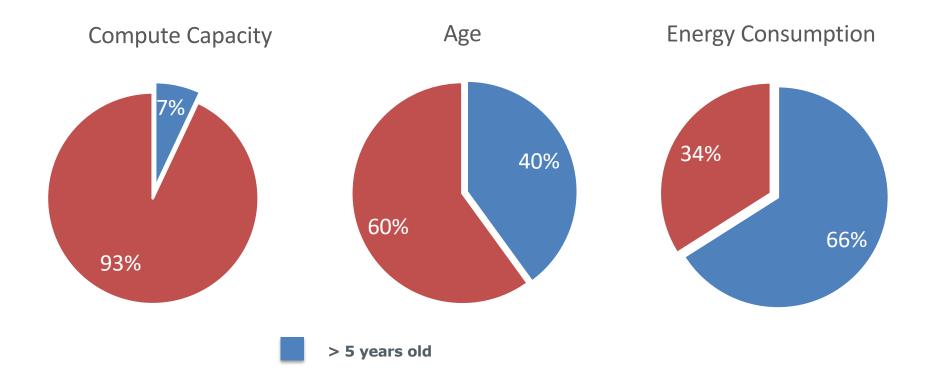

Background – State of the EU DC sector based on findings from the EURECA project

Ecodesign Regulation on servers and data storage products


Wider EU initiatives towards digital and sustainable society

Panel Discussions

Data centre size (in racks)



Energy Consumption breakdown by IT Equipment type

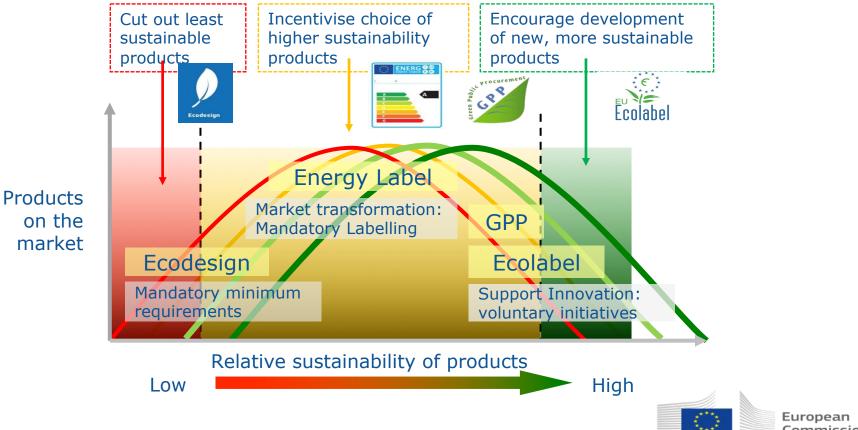
Power Usage Effectiveness (PUE)

Server Distribution

		1		Ann	Annual Use Phase Energy in KWh (for running workload ω)						
	Scenario	rio PUE	β	Hardware 1 (7.5Y old)	Hardware 2 (6Y old)	Hardware 3 (4.5Y old)	Hardware 4 (3Y old)	Hardware 5 (1.5Y old)	Hardware 6 (Current)*		
sed)	Worst	3	5%	51,372,685	15,414,061	12,840,312	6,257,229	2,453,698	2,093,779		
On-Premise on-virtualise	Average	2	10%	17,708,754	5,533,001	4,617,433	2,356,780	952,302	820,422		
On-Premise (non-virtualised)	Best	1.5	25%	5,838,699	2,015,383	1,688,826	950,967	406,652	356,373		
(p	Worst	2.5	5%	42,810,571	12,845,052	10,700,260	5,214,358	2,044,749	1,744,816		
Colocation n-virtualis	Average	1.8	10%	15,937,879	4,979,702	4,155,690	2,121,102	857,072	738,380		
(nor	Best	1.3	25%	5,060,206	1,746,666	1,463,650	824,172	352,433	308,857		
On-Premise (virtualised)	Worst	3	6%	43,102,834	13,042,542	10,868,925	5,349,876	2,111,950	1,806,064		
n-Pre	Average	2	30%	6,682,286	2,370,976	1,988,917	1,146,976	496,637	436,802		
6 E	Best	1.5	60%	2,944,252	1,185,352	998,841	633,394	287,041	255,673		
Cloud	Worst	2.5	7%	30,996,498	9,457,166	7,883,993	3,918,139	1,556,537	1,333,795		
Private Cloud	Average	1.8	30%	6,014,058	2,133,878	1,790,026	1,032,279	446,974	393,122		
e.	Best	1.3	60%	2,551,685	1,027,305	865,662	548,941	248,769	221,583		
Public Cloud	Worst	2	7%	24,797,198	7,565,733	6,307,194	3,134,511	1,245,229	1,067,036		
blic 0	Average	1.5	40%	3,977,983	1,481,792	1,245,265	746,813	329,759	291,637		
Pu	Best	1.1	70%	1,942,527	807,147	680,852	440,725	201,546	179,958		

Source: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8263130

Server Utilisation


Points affecting server utilisation

- Active Active / clustering deployments
- Peak utilisation vs performance degradation
- Ensuring there is enough capacity in the system to cater for workload peaks
- Having the right server configuration for the workload

The Ecodesign Regulation on servers and data storage products

Commission

- An Ecodesign Regulation on servers and data storage products has been recently voted by European Union (EU) Member States

- It aims to reduce, in a sustainable way, the environmental impact on these products in the EU market

- It contains requirements (as of 03/2020) on:

A. Energy Efficiency aspects (maximum idle power consumption, minimum server efficiency in active state, minimum efficiency of the power supply unit, information requirements on product operating conditions and on idle power at higher temperature)

B. Material efficiency aspects

- Servers and data storage products show good examples of refurbishment practices, take-back schemes, etc..

Commission

- The proposed requirements aim to overcome a few barriers and further improve the Circular Economy of these product in a sustainable way for businesses:

1. Design for disassembly

2. Secure data deletion of reusable data storage equipment.

3. Securing that firmware updates for product are available for repairers.

4. Critical raw material information requirement.

Servers with up to four processor sockets, including among others: Tower servers, rack servers, blade servers, multi-node servers, resilient servers etc.

* Note that these are pictorial representations, actual products may differ.

Online 2, 3 and 4 data storage products

Online 2

Online 3

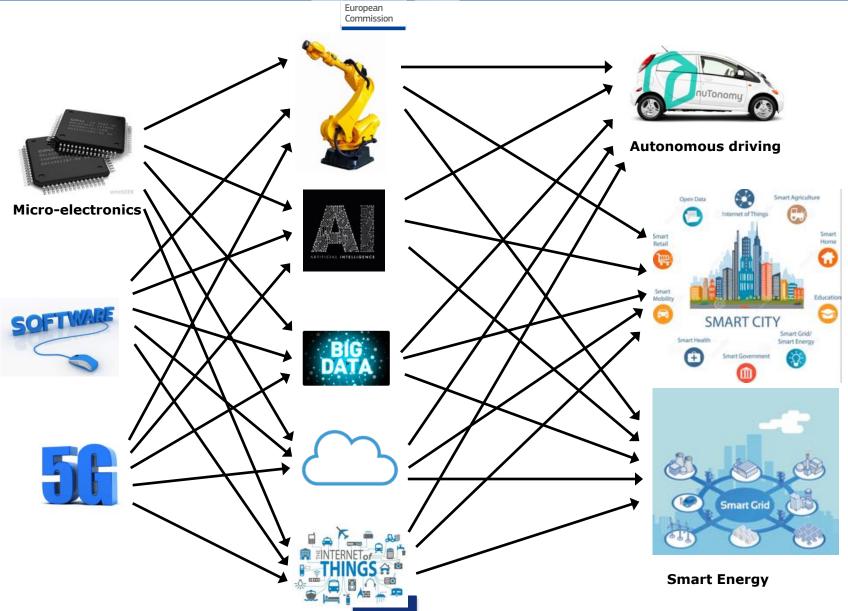
Junnan and		
(Internet internet)		
	MILLIERE	

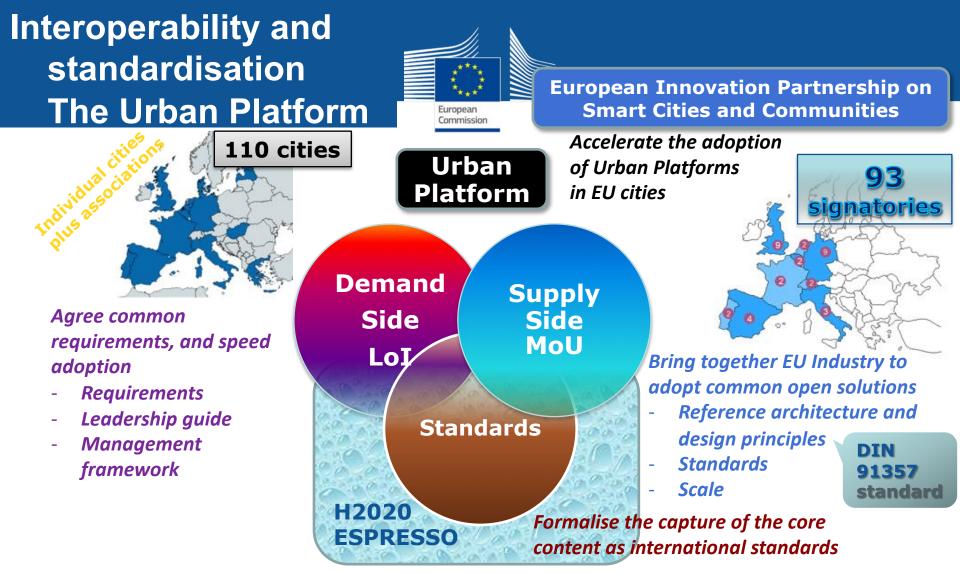
Online 4

***Online 1-6 products are based on Online classification by SNIA Emerald.**

****Note that these are pictorial representations , actual products may differ.**

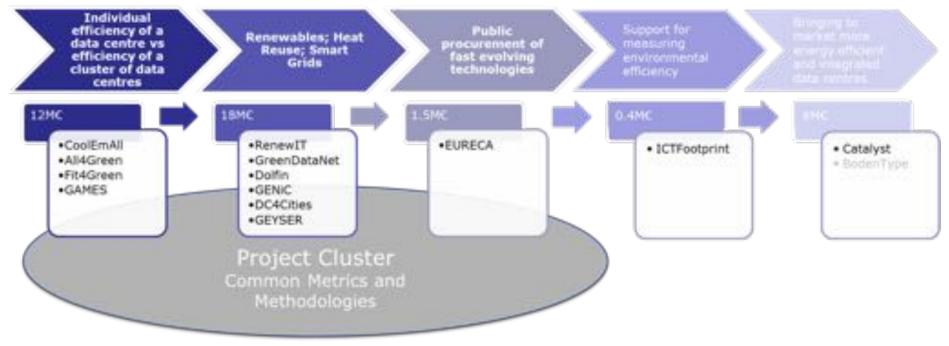
Towards a digital and sustainable society A European Commission perspective


- Paris Agreement & EU sustainability objectives
- Strong cross-border dimension of the cloud
- Contributing to the Sustainable Development Goals

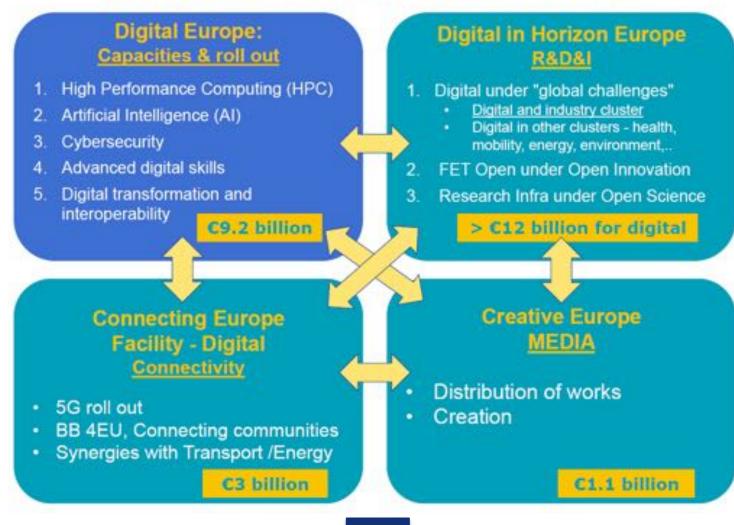

EU sustainability targets compared to 1990 levels:

	2020	2030	2050
Decrease in GHG emissions	20%	40%	80-95% (100% for energy sector)
Renewable energy	20%	27->35%	75-97%
Improvement in Energy efficiency	20%	27->35%	41% (vs 2005-6 peak)

Digitalising of society


 By 2025, ensure that 300m residents of EU cities are supported by Urban Platform(s) to manage their business with a city and that the city in turn drives efficiencies, insight and local innovation through the platform(s)

- SAREF (Smart Appliances REFerence ontology), the creation of which was fostered by the European Commission, is an ETSI SmartM2M/OneM2M standard since 2015
- Commercial products based on it since 2016
- Since January 2017 a new modular version of SAREF with ever expanding number of extensions - from Energy, Buildings and Environment towards Smart Cities, Smart AgriFood, Smart Industry & Manufacturing, Automotive, Health/Ageing-well, Water, Wearables...


EU FP7/H2020 initiatives on sustainable data centers

Digital in MFF 2021-2027

DIGITAL IN THE NEXT MFF: OVERVIEW

Panel Discussion

Moderator:

Rabih Bashroush

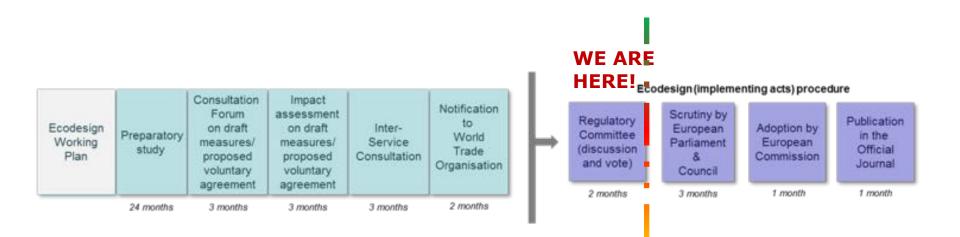
Coordinator, EU H2020 EURECA Project Director, Enterprise Computing Research Lab University of East London R.Bashroush@qub.ac.uk

Panel members:

Davide Polverini

Policy Officer, Ecodesign Team Directorate-General Internal Market, Industry, Entrepreneurship and SMEs European Commission <u>davide.polverini@ec.europa.eu</u>

Svetoslav Mihaylov


Policy Officer, Smart Mobility & Living Directorate-General Communications Networks, Content and Technology European Commission Svetoslav.MIHAYLOV@ec.europa.eu

Additional Material

Process

Is idle power consumption of servers relevant in the EU?

A data center taxonomy for the EU market – current figures and expected trends

Data centre type	2015	2020	2030
SME data centres	20%	15%	13%
Mid-tier/older data centres	18%	15%	12%
Colocation data centres	34%	40%	40%
Hyperscale/ Cloud data centres	28%	30%	35%

- When servers are running idle (i.e., doing no useful work), they still consume energy! (typically 25%-65% of the maximum power)
- Our understanding of the EU market shows that still nowadays, a not negligible portion of the servers on the market is operated at idle power for several hours per day
- Servers running at high utilization levels most of the time are already excluded from the idle power requirements (HPC servers, servers with integrated APA and resilient servers)

Findings from the EU H2020 EURECA Project (close to finalisation)

ver 350 data centres of public administrations in the EU were analised (ministries, universities, etc)

Fig. 4.3. Average Annual Server Utilisation range

And elsewhere?

Shehabi, A., et al, "United States Data Center Energy Usage Report." Lawrence Berkley National Laboratory. (2016).

Table 1. Average	Active	Volume	Server	Utilization	Assumptions
------------------	--------	--------	--------	-------------	-------------

Space Type	2000-2010	2020	
Internal	10%	15%	
Service Provider	20%	25%	
Hyperscale	45%	50%	

And what will happen in the short-medium term?

- Reliable forecasts are very difficult
- Future upcoming trends: virtualisation, but also others who could go in the opposite direction, such as 'fog computing' and 'edge computing'.
- Consumer choice (perceived security for in house operations) and external constraints (infrastructures) could further delay the trend towards virtualisation

Main instruments

Ecodesign Directive 2009/125/F hework"
defining the "rules" for setting reference of the "rules" for setting reference of the "rules" for setting reference of the "rules" for setting product-specific
requirements/legislation on standard information of the
consumption of energy and other resources

Other related instruments

Ecolabel: The EU Ecolabel helps ide ducts and services that have a reduced impact on the environment of raw material +' production, use and disposal.

Green Public Procurem voluntary instrument. GPP can help stimulate a critical mass of demand for more sustainable goods and services which otherwise would be difficult to get onto the market.

XYZ

XYZ

0/1062 - 2

What is the problem

- European data centres consuming more than 104TWh (2015) per annum representing 3% of total electricity (PEDCA project)
- This could grow with 20% by 2020 (35% over 9 years (Smart 2012/0064)) compared to falling or flat rest of ICT
- Even worse for networks growth in consumption 150% in 9 years (Smart 2012/0064) – compared to falling or flat rest of ICT
- Some new trends such as IoT, edge computing, SDN/NFV, etc. not taken into account in above growth figures
- The percentage (and if no action the total consumption) will only go up as the other sectors become more efficient with ICT (smartening)
- Some member countries/cities are hitting the **limit of their power grids**
- There is an ongoing improvement, but pace is slow with potential to get slower

The EIP-SCC European Innovation Partnership for Smart Cities & Communities

Citizen Focus Integrated Planning **Busine** / Policy & SS Regulations Models 6 Action Urban Clusters Platform Small Giants Humble Lamppost Sustainable Integrated **Districts & Built** Infrastructures Environment and Processes Sustainable Urban Mobility

4,600 partners

370 commitments

31 countries

Deliver: scale, acceleration, & impact,...

Through: common solutions, an integrated approach, & collaboration

Focus on Energy, Transport and ICT

H2020

- Lighthouse projects (~100 M€/year; ~4 projects/year; per project – 3 lead cities, 3 follower cities and other cities)
- CSAs (Espresso, CityKeys, etc.)