OPEN. FOR BUSINESS.
OCP Profiles for Platform Hardware Management

John Leung
Intel Corporation - Data Center Group - Principal Engineer
OCP Incubation Committee Representative to the HW Management Project
OCP Profiles

• The vision: the OCP Profile specifies conformance requirements for an OCP submission as a checklist item
• Initially, the OCP Profile will contain the requirements for the manageability interface
 – Manageability interface is based on Redfish¹
 – OCP profile is specified using the Redfish Profile format
 – Conformance is tested with the Redfish open source tools

¹A manageability interface standard from the DMTF (dmtf.org)
Platform Manageability based on Redfish

- The OCP Hardware Management Project
 - Has approved the "OCP Baseline Hardware Management Profile"
 - Specifies the manageability common across OCP platforms
- Other OCP projects
 - Create platform level profiles by extending the "Baseline Hardware Management Profile"
 - To include platform specific requirements
- Start with the OCP Server platform
OCP Profile Status

• Server Project
 - Reviewing the "OCP Server Hardware Management Profile" v0.2.0

• Storage Project
 - There is interest in creating an "OCP Storage Hardware Management Profile"

• Rack and Power Project
 - Active work - "The majority of the descriptive work that we need for Rack & Power management has been already been done for the DCIM domain." - Mike
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Contributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack and Power Redfish Profile</td>
<td>In Development</td>
<td>Shared</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Target Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Generate initial list of elements for the rack and power schema/mock-up</td>
<td>Done</td>
</tr>
<tr>
<td>2. Generate mock-up and test with validator to create initial feel of the validation process</td>
<td>Done</td>
</tr>
<tr>
<td>3. Consolidate additional elements needed for the schema/mock-up</td>
<td>Sept 7, 2018</td>
</tr>
<tr>
<td>- Upload updated checklist</td>
<td></td>
</tr>
<tr>
<td>- Solicit inputs from members</td>
<td></td>
</tr>
<tr>
<td>4. Schedule semi-monthly calls</td>
<td>By August Rack&Power Meeting</td>
</tr>
<tr>
<td>5. Finalize process for determining the baseline for the Rack&Power profile</td>
<td>Will be done on semi-monthly calls</td>
</tr>
</tbody>
</table>
Redfish Overview

- A modern RESTful interface for manageability
- Uses cloud/web protocols, structures, security models and tool chains
- Schemas are accessible so an interface can be introspected and enabled programmatically
- Models specified for managing datacenter platforms and devices (compute, storage, network, facilities)

HTTP/S

```plaintext
HTTP GET https://<ip_addr>/redfish/v1/Systems/CS_1
```

Python code

```python
rawData = urllib.urlopen('https://<ip_addr>/redfish/v1/Systems/CS_1')
jsonData = json.loads(rawData)
print( jsonData['SerialNumber'] )
```

Output

```
1A87CA442K
```
Redfish interface and schema

- Redfish interface
 - HTTP/HTTPS - GET, POST, PATCH, DELETE
 - JSON – format of content

- Redfish model schema
 - Describes the content of the JSON response
 - DMTF develops the models for platforms and compute/servers
 - Other organization create models for their management domain

1 OData is an OASIS Standard
2 CSDL = Common Schema Definition Language
3 AKA Swagger
Redfish JSON response

- Obtained by issuing an HTTP GET
 - URL = /redfish/v1/Systems/<member>
- JSON response contains
 - Simple properties
 - Complex properties
 - References to subordinate resources
 - References to associated resources
 - Actions
 - References to schema
- Redfish is a hypertext model
 - Resources are accessible by traversing references

```json
{
  "@odata.context": "/redfish/v1/$metadata#ComputerSystem.ComputerSystem",
  "@odata.type": "#ComputerSystem.v1_3_0.ComputerSystem",
  "@odata.id": "/redfish/v1/Systems/CS_1",
  "Id": "CS_1",
  "Name": "My Computer System",
  "SystemType": "Physical",
  "AssetTag": "free form asset tag",
  "Manufacturer": "Manufacturer Name",
  "Model": "Model Name",
  "SerialNumber": "2M220100SL",
  "PartNumber": "78899498CLF-7",
  "Description": "Description of server",
  "UUID": "00000000-0000-0000-0000-000000000000",
  "HostName": "web-srv344",
  "IndicatorLED": "Off",
  "PowerState": "On",
  "BiosVersion": "P79 v1.00 (09/20/2013)",
  "Status": { "State": "Enabled", "Health": "OK", "HealthRollup": "OK" },
  "Boot": { ... },
  "ProcessorSummary": [ ... ],
  "MemorySummary": [ ... ],
  "TrustedModules": [ [ ... ] ],
  "Processors": [ { "@odata.id": "/redfish/v1/Systems/CS_1/Processors" } ],
  "Memory": [ { "@odata.id": "/redfish/v1/Systems/CS_1/Memory" } ],
  "EthernetInterfaces": [ { "@odata.id": "/redfish/v1/Systems/CS_1/EthernetInterfaces" } ],
  "SimpleStorage": [ { "@odata.id": "/redfish/v1/Systems/CS_1/SimpleStorage" } ],
  "LogServices": [ { "@odata.id": "/redfish/v1/Systems/CS_1/LogServices" } ],
  "SecureBoot": [ { "@odata.id": "/redfish/v1/Systems/CS_1/SecureBoot" } ],
  "Bios": [ { "@odata.id": "/redfish/v1/Systems/CS_1/Bios" } ],
  "PCleDevices": [ { "@odata.id": "/redfish/v1/Chassis/CS_1/PCIeDevices/NIC" } ],
  "PCleFunctions": [ { "@odata.id": "/redfish/v1/Chassis/CS_1/PCIeDevices/NIC/Functions/1" } ],
  "Links": [ {
    "Chassis": [ { "@odata.id": "/redfish/v1/Chassis/Ch_1" } ],
    "ManagedBy": [ { "@odata.id": "/redfish/v1/Managers/Mgr_1" } ],
    "Endpoints": [ { "@odata.id": "/redfish/v1/Fabrics/PCIe/Endpoints/HostRootComplex1" } ]
  } ],
  "Actions": {
    "#ComputerSystem.Reset": {
      "target": "/redfish/v1/Systems/CS_1/Actions/ComputerSystem.Reset",
      "@Redfish.ActionInfo": "/redfish/v1/Systems/CS_1/ResetActionInfo"
    }
  }
}
```
Redfish Compute Model

HTTP GET /redfish/v1/Systems/CS_1/Processors/2

Service Root
- /redfish/v1
 - Root

Collection Resource
- /redfish/v1/Systems
 - Collection of Systems
 - "Logical view"
- /redfish/v1/Chassis
 - Collection of Chassis
 - "Physical view"
- /redfish/v1-Managers
 - Collection of Managers
 - "Mgmt hierarchy"

Single Resource
- /Systems/<id>
 - Computer System
- /Chassis/<id>
 - Chassis
- /Managers/<id>
 - BMC

Compute
- Processors
- Memory
- Disks
- NICs

Platform HW Mgmt
- Power
- Thermal

Managed By
- Computer Systems

Open. For Business.
Capabilities of Compute Model

• **Chassis Information**
 - Identification and asset information
 - State and status
 - Temperature sensors and fans
 - Power supply, power consumption and thresholds
 - Set power thresholds

• **Compute Manageability**
 - Reboot and power cycle server
 - Change boot order and device
 - Configure BIOS settings
 - Update BIOS and firmware
 - Memory and NVDIMMs
 - Local network interface
 - Local storage
 - State and status

• **Management Infrastructure**
 - View / configure BMC network settings
 - Manage local BMC user accounts
 - Configure serial console access (e.g. SSH)

• **Discovery**
 - Compute (servers)
 - Physical hierarchy (rack/chassis/server/node)
 - Management hierarchy (rack mgr, tray mgr, BMC)

• **Security**
 - HTTPS
 - Map roles to privileges

• **Access and Notification**
 - Subscribe to published events
 - Inspect Logs
 - Host interface for in-band access

• **Composition**
 - Specific composition
 - Constrained composition

Red font = notable capabilities
Extending Redfish manageability

- The Redfish Forum enabling other SDOs to create and extend models into new management domains
 - Networked storage, storage services, and non-volatile storage (SNIA, NVMExpress)
 - Ethernet Switch (IETF) - map YANG to Redfish
 - Industrial IoT (PICMG)
 - Customer Premise Equipment (Broadband Forum)
 - BIOS interface (UEFI)
 - DC facilities infrastructure devices (The Green Grid, ASHRAE)
Conformance Testing with Redfish Tools

- Redfish Interop Validator
 - Runs conformance test against an implementation (pass/fail)
 - The Profile file is read to determine which tests to perform
 - Open source application\(^1\)

- Profile file
 - Specified by OCP projects
 - HW mgmt project - baseline requirements
 - Other projects - requirements beyond the baseline

\(^1\)github.com/DMTF/Redfish-Interop-Validator
OCP Redfish Profile file

- A JSON formatted file
- File contains requirements for
 - Supported protocols
 - Supported resources
 - Create, delete, etc.
 - Supported properties
 - read-only or read/write, Conditional, MinCount, Value, Action
"OCP Baseline Hardware Management Profile"

The server profile references the baseline profile¹

¹http://www.opencompute.org/wiki/Hardware_Management/SpecsAndDesigns#Baseline_and_Server_profile
OCP Profile Specification

- The specification is a readable version of the profile
- Contains:
 - Sample with requirements bold-faced
 - Requirement Tables

<table>
<thead>
<tr>
<th>Property</th>
<th>Rqmt</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UUID</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>RedfishVersion</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>AccountService</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>SessionService</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Chassis</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>Managers</td>
<td>Mandatory</td>
<td></td>
</tr>
</tbody>
</table>
"OCP Baseline Hardware Management Profile"
Power and Thermal Resource

Service Root

- Chassis
 - Power
 - ≥ 1
 - Thermal
 - ≥ 1
- Managers
 - ≥ 1
- Account Service
- Session Service
 - ≥ 1
- Accounts

"OCP Server Hardware Management Profile"

1http://www.opencompute.org/wiki/Hardware_Management/SpecsAndDesigns#Baseline_and_Server_profile
"OCP Server Management Profile": System Resource

```json
{  "@odata.id": "/redfish/v1/Systems/1",  "Id": "1",  "Name": "My Computer System",  "SystemType": "Physical",  "AssetTag": "free form asset tag",  "Manufacturer": "Manufacturer Name",  "Model": "Model Name",  "SKU": "",  "SerialNumber": "2M220100SL",  "PartNumber": "",  "Description": "Description of server",  "UUID": "00000000-0000-0000-0000-000000000000",  "HostName": "web-srv344",  "Status": { "State": "Enabled", "Health": "OK", "HealthRollup": "OK" },  "IndicatorLED": "Off",  "PowerState": "On",  "Boot": {    "BootSourceOverrideEnabled": "Once",    "BootSourceOverrideMode": "UEFI",    "BootSourceOverrideTarget": "Pxe",    "BootSourceOverrideTarget@Redfish.AllowableValues": [ ... ],    "UefiTargetBootSourceOverride": "uefi device path"  },  "BiosVersion": "P79 v1.00 (09/20/2013)",  "ProcessorSummary": {    "Count": 8,    "Model": "Multi-Core Intel(R) Xeon(R) processor 7xxx Series",    "Status": { "State": "Enabled", "Health": "OK", "HealthRollup": "OK" }  },  "MemorySummary": {    "TotalSystemMemoryGiB": 16,    "MemoryMirroring": "System",    "Status": { "State": "Enabled", "Health": "OK", "HealthRollup": "OK" }  },  ...
```

System (continue)

```
```
Next Steps

• Attend the "OpenBMC Status Update" at 14:00
 - Open source implementation with Redfish support
• Participate in OCP project's efforts to create OCP profiles
 - Hardware Mgmt, Server, Rack & Power & Storage
• Test your platforms for conformance with the OCP Server Profile
 1. Setup Python execution environment
 2. Download the Redfish Interop Validator
 3. Execute the Validator with the OCP Server Profile