OPEN. FOR BUSINESS
Cell Site Gateway Router

Janet Peng
Director AT&T Labs
Network Cloud & Infrastructure
Agenda

Why New Cell Site Gateway Router?
Open and Flexible
Whitebox Requirement Framework
Cell Site Gateway Router Topology
Deployment Environment
Major Requirements
High Level Systems Block Diagram
Summary of AT&T Whitebox Experience

"Copyright 2018 AT&T Intellectual Property. All rights reserved."
Exponential Data Traffic Growth

- Increased internet adoption, faster broadband, next generation wireless networks, the Internet of Things, and increased live streaming of online videos are expected to drive exponential traffic growth
- The old hardware model simply can’t keep up

5G Deployment

- Stringent demands of 5G on speed, bandwidth and performance with low latency
- 5G mobile technology can send massive amounts of data with low latency, little downtime in between
- Changing needs of backhaul transport requirements as mobile service providers make the transition from legacy technologies toward 5G RAN technologies

Need a high-performance, versatile router to meet service requirements
Open & Flexible

Proprietary
- Fixed
- Siloed

Open - Standard
- Flexible
- Modular
Open Platform

Whitebox

Not Custom Built
Open Platform/Interfaces
Off-the-Shelf Technology
Multi-Vendor Sourced
Principle

- Open-standard, flexible, modular
- Interactive approach, engage all key stakeholders
- Work towards a solution with the end game in mind
- Common spec
- Use case specific spec

Cell Site Gateway Router

- AT&T is releasing hardware specs to OCP
- ODMs are contributing detailed design package

Whitebox Requirement Framework

AT&T Specifications

- Use case: Cell Site Gateway Router
- Use case 2
- Use case n

Use case Specific Requirements

White Box Router and Switch Design Requirements

Common Requirements

- Hardware /Specs
- Common Systems
- Common Operations
- Common Security

Suppliers

- Component Technologies
- VAR (Integration) NOS + HW
- NOS (internal/3rd party /Opensrc)
- ODM (HW)

Open Source Community
AT&T Cell Site Gateway Router (CSGR) Topology

5G requires new technologies and solutions to deliver an order of magnitude higher capacity, performance and low cost.

Cell Site (tens of thousands)

CPRI/eCPRI - Common Public Radio Interface/enhanced CPRI
Deployment Environment

- Designed to operate at hardened temperature ranges (-40C to + 65C)
- Meet NEBS Level 3 in both Carrier Communications and Class 2 OSP (Outside Plant) space
- Physical Dimension: 1RU, 19”, shallow depth
- Front to Back Air flow. Front access to power and ports
- Redundant, Replaceable Fans and Power Supply modules
Major Requirements

- 1+1 redundant high efficiency power supply
- Intel x86 for the NOS routing software
- BMC for platform health status monitoring and recovery
- Broadcom Qumran-AX switching chip with deep buffers to support advanced features and QoS
- Interfaces: support up to 2x100G/40G, 8x25G/10G/1G, and N {10G, 1G,100M}
- Support Long Range Optics (ZR -80km for 1G/10G) and (ER 4-40km for 100G)
- Timing circuitry block that supports a variety of inputs and outputs support to the evolving timing requirements and implementations in the 5G technology evolution, including 1588v2 and SyncE
High-Level Systems Block Diagram

- **Intel CPU**: 4-Cores, 16GB DRAM, 128GB SSD
- **Qumran AX BCM88470**
- **External Packet Buffer**
- **IEEE 1588 Sync-E GPS, 1PPS Timing Block**
- **PSU1**
- **PSU2**
- **CON**
- **Fan Handle**
- **Fan1**
- **FanN**
- **Dual Flash**
- **TPM**
- **Eth MT RJ45**
- **RJ45 Serial**
- **Micro USB**
- **N-SFP Connectors**
- **8-SFP28 Connectors**
- **2 QSFP Connectors**
- **BITS, TOD, GPS, 1PPS, 10Mhz Inputs**
- **IEEE 1588 Sync-E GPS, 1PPS Outputs**
- **1PPS, 10Mhz Inputs**
- **Fit in 19" cabinet**
- **Shallow Depth to fit in Class 2 OSP Cabinet Including Clearance for Cables & Fibers and Airflow**

Notes:
- PHY is not a requirement. It is possible to have PHYLESS design as long as the design supports the required number of Long Reach optics.
• AT&T has made great progress and is on track to deploy whitebox hardware
• Provide leadership and direction on Telco/Service Provider space
• Educate ODMs and suppliers on AT&T use cases and collaborate on systems design to ensure hardware and software have the flexibility to support the disaggregated model
• Learn about ODMs and component technology suppliers’ development processes and products
• Define and create new whitebox integration processes and operational model
• Opportunity to provide feedback on component technologies of features and requirements that are important for Telco use cases
• Stable hardware, agile firmware and software development process to support dev ops model
• Direct interaction with ODMs and suppliers to make sure designs meet common systems requirements and deployment practices such as cabling, powering cooling constraints
• Continue collaboration with open source community and other service providers to advance work in Telco space
Thank You